
1

Landin’s Thesis and the Issue of ‘Syntactic Sugar’

• The -calculus (LC) is said to have laid the foundations not just of Functional

Programming (FP) but also of programming in general, despite the Turing-Machine (TM) model

being a clearer model of a computing machine. A TM actually proceeds in steps of computation.

It can be programmed by a machine table. The Programmable Register Machine (PRAM)

improves on that in the model of (random) memory access and comes close to the von Neumann

architecture of standard computing machines. Low level programming with Assembler (like)

instruction sets takes only a small step from a simple PRAM to higher level programming. A

paradigmatic higher level programming language like C takes then only a smaller step from

Assembler and embodies the paradigm of Imperative Programming (IP) and computer memory

management. This procedural approach seems distinct from the -calculus.

• In the 1960s/1970s programming was just burgeoning into a manifold of programming

languages, LISP and ALGOL being two of the first programming languages with LISP being

more functional than imperative and ALGOL being more imperative (leading to its proper

imperative followers PASCAL and C), Peter Landin proposed that programming languages are

just LC with added ‘syntactic sugar’ for easier comprehension and practical implementation.1

This has been dubbed2

 (Landin’s Thesis) Programming Languages are -calculus

sweetened with syntactic sugar.

• -terms in LC and FP define functions, they give no instructions. Computation in FP

occurs in evaluating them, starting from the -reduction rule (applying the term in the scope to

some arguments) and evaluating the resulting terms with respect to the involved function(s).

Thus, for instance, in evaluating “x(x + 1)4” -reduction yields “4 + 1”, and this is evaluated as

an addition. Addition has to have been implemented somewhere as a procedure. The static

1 Cf. Landin, “A correspondence between ALGOL 60 and Church's Lambda-notation”.
2 Cf. Trakhtenbrot, “Comparing the Church and Turing Approaches: Two Prophetical Messages”.

2

impression -terms convey hides recurring on implemented (basic) procedures to evaluate -

terms. In this way Declarative Programming (say, as Logical Programming in PROLOG) and

Functional Programming (say, in HASKELL) rely on the procedures (i.e. Imperative

Programming) of their (virtual) evaluation machines. The procedural semantics of a PROLOG-

program assigns to the program the (unification involving) steps of the resolution algorithm to

resolve the program (in contrast to a denotational semantics of the program). Resolution is a

procedure. As machine procedures form the core of machine computation the core of machine

computation is IP. As FP and IP are often contrasted as paradigms this contrast is justified with

respect to the style of actual programming languages and corresponding code (say, in

HASKELL or PROLOG in contrast to C). Nonetheless – especially given the paradigm

contrast between IP and FP – procedures (i.e. IP) seem to be more than just ‘syntactic sugar’.

• In LC one can have if then else-like statements by an encoding that mimics the branching

behaviour; e.g. if the Boolean value true is encoded “xy.x”, the value false as ‘xy.y”, and

branching if then else as “bxy.bxy”, then by -reduction if true t u → t, because this is

“(bxy.bxy)(xy.x)t u”, accordingly if false t u → u. Thus, a code with branching can be

expressed within LC. Numeral constants (‘Church Numerals’) can be introduced by -terms with

iterated self-application. As also arithmetic operations can be introduced a branching code with

arithmetic operations on numerals can be encoded into a – long and hard to read – -expression.

LC can be understood as a programming language.

Translating such a -expression in ‘ordinary’ code with symbols “+”, “if” etc. one can see the LC

as the backbone of such symbolic code and the use of the easier to read symbols as ‘syntactic

sugar’.

• Combining the last two points we can say, on the one hand, that symbolic code is

‘syntactic sugar’ for -expressions, but as -expressions are evaluated by implemented

procedures which ultimately come down in a machine to Assembler operations, on the other

hand symbolic code is closer related to what the machine does. (This is almost tautological for

low level programming.)

• Programming languages that implement LC inherit meta-logical features of LC:

3

(i) They can implement programs that do not return, because to be Turing-complete they

have to implement the partial recursive functions.

(ii) Whether a program in such a language terminates or is correct (i.e. computes what it

should compute) is not decidable in general.

(iii) The consistency of programs in general in such a language cannot be checked by a

program of that language.

Programming languages that enforce termination of every program can do so only at the cost of

sometimes giving the wrong answer, and there will be (even) total functions which they cannot

compute.

These properties correspond to the Halting Problem (Church’s Theorem), Rice’s Theorem,

Gödel’s 2nd Incompleteness Theorem, and the non-enumerability (by diagonalization) of the total

recursive functions.

