
An εεεε-Calculus 
 
 
The ε-calculus was part of Hilbert’s finitist programme, but can be used, of course, 
independently of its intended application.  
[Hilbert’s, Bernay’s and Ackermann’s use of it will be of no concern here.] 
 
The ε-operator or ε-symbol is syntactically like a ι-operator or ι-symbol. 
Whereas the ι-operator is used to define a definite description to which one object 
corresponds (in standard FOL with descriptions) or at most one existing object (in Free Logic 
description theories) the ε-operator picks one out of the set of objects satisfying the predicate 
in question.  
 
Like standard description theories employ a dummy object for those descriptions which do 
not pick out a unique object, the semantics of an ε-calculus will employ a dummy object in 
case the ε-operator is applied to a predicate which denotes the empty set. 
The ε-expression thus involves choosing ‘one of the …’. Which object is chosen stays 
indefinite, and we do not have to know how many ‘of the …’ exist. The choice is not by us, 
but considered to be one of the possible choices among the objects satisfying the predicate in 
question. One may also think of it as a choice left open to an opponent in an argument. 
In the formal semantics of an ε-calculus an ε-expression like ‘εxF(x)’ denotes either one of 
the objects d of the domain D such that d∈||F|| or some arbitrary but fixed dummy object 
d0∈D in case ||F||=∅. This means that the expression ‘ε’ itself is interpreted by a choice 
function on the subsets of the domain D, d0 being the fixed choice for ∅.  
 
Semantically an ε-calculus thus employs a global choice function. Models for the ε-calculus 
extend the usual FOL-models with a global choice function ƒ (one for each model, of course). 
The truth conditional semantics contains the further denotation condition (with ϕ being 
schematic for a predicate): ||εxϕ(x)||=ƒ(||ϕ||). 
 
A calculus like the following using ε-expressions is a conservative extension of FOL (i.e. with 
respect to ‘ε’-free formula FOL and the ε-calculus coincide). [Hilbert/Bernay’s Second ε-Theorem] 
 
 
 



 
Axioms and rules of an ε-calculus 
 
[following Leisenring’s axiomatization, aiming at easy use, not at compression] 
Usual syntax with: A, B … wffs; s, t … singular terms; F, G … predicates/open formulas. 
 
 

Axioms 
 
A1 A ⊃ (B ⊃ A) 

 A2 (A ⊃ (B ⊃ C)) ⊃ ((A ⊃ B) ⊃ (A ⊃ C)) 
 A3 (¬A ⊃ ¬B) ⊃ (B ⊃ A) 
 A4 (A ⊃ ⊥) ⊃ ¬A 
 A5 (A ∧ B) ⊃ A 
 A6 (A ∧ B) ⊃ B 
 A7 A ⊃ (B ⊃ A ∧ B) 
 A8 ¬(A ∨ B) ⊃ ¬A 
 A9 ¬(A ∨ B) ⊃ ¬B 
 A10 ¬A ⊃ (¬B ⊃ ¬(A ∨ B)) 
 
 A11 ∀xF(x) ⊃ ¬∃x¬F(x) 
 A12 ¬∀xF(x) ⊃ ∃x¬F(x) 
 A13 ¬∃xF(x) ⊃ ¬F(t) 
 A14 ∃xF(x) ⊃ F(εxF(x)) 
 
 A15 (s = t ∧ F(s)) ⊃ F(t)   
 A16 t = t 
  
 A17 ∀x(F(x) ≡ G(x)) ⊃ εxF(x) = εxG(x) 
 
  
 Rules 
 

R1 Uniform Substitution      (S) 
 R2 Γ�A, Σ�A⊃B � Γ∪Σ�B Modus Ponens  (MP) 
 
 
 
Once we have ε-expressions there is only a use for ι-expressions in cases where uniqueness is 
of importance. We can simply add ι-expressions to an ε-calculus as they can be defined by an 
ε-expression. Using ι-expressions standard FOL description theories use a dummy object for 
failing descriptions. Define “∃!xF(x)” by “∃x(F(x)∧∀y(F(y)⊃y=x))”. Let us again use the 
object d0 denoted by the expression “d”. We can add the following definition to the calculus: 
 

(Dι) ιxF(x) � εx((F(x) ∧ ∃!xF(x)) ∨ (¬∃!xF(x) ∧ x=d)) 
  
   
 



Comments:  
 
1. (A1) – (A10) deal with propositional logic.  

2. (A11) – (A14) deal with quantificational logic, and we see here an employment of an ε-
expression in specialising an existence assumption. In principle employing ‘ε’ allows for the  
reduction of the quantifiers [Hilbert/Bernay’s First ε-Theorem], by the two definitions: 
 ∃xF(x) ≡ F(εxF(x)) 
 ∀xF(x) ≡ F(εx¬F(x)) 
and using the axiom: F(t) ⊃ F(εxF(x)). The calculus here, again for ease of use, employs both 
quantifiers and ‘ε’. 
By (A12) and (A14) we get 
 ¬∀xF(x) ⊃ ¬F(εx¬F(x)) 
and thus by contraposition, (A3) and MP, we get 
 (T1)  F(εx¬F(x)) ⊃ ∀xF(x) 
 (DR1)  Σ�F(εx¬F(x)) � Σ�∀xF(x)    (UG) 
Semantically speaking F(εx¬F(x)) means that even ‘one of the ¬F’ is F, which, avoiding the 
obvious contradiction F(εx¬F(x))∧¬F(εx¬F(x)), can only mean that ||¬F||=∅. So ||F||=D and 
εx¬F(x)=d0. Note that, correctly, d0∈||F|| as ||¬F||=∅. 
By (A11) and (A13) we get 
 (T2)  ∀xF(x) ⊃ F(t) 
 (DR2)  Σ�∀xF(x) � Σ�F(t)     (US)  
By (A13) and contraposition weg et 
 (T3)  F(t) ⊃ ∃xF(x) 
 (DR3)  Σ�F(t) � Σ�∃xF(x)     (EG) 
We can also put (A14) in form of a derived rule 
 (DR4)  Σ�∃xF(x) � Σ�F(εxF(x))    (ES) 

3. (A15) and (A16) are the usual axioms extending FOL with identity. (A15) can also be 
expressed as derived rule: 
 (DR5)  Σ�s=t, Γ�F(s) � Σ∪Γ�F(t)    (SI) 

4. (A17) corresponds to the global choice function being a function, i.e. being unique in 
choice of a representative of a subset of D, irrespectively which predicates denote this subset. 

5. Using (Dι), (ES) one can prove the usual theorems for definite descriptions: 
 (T4)  ∃!xF(x) ⊃ F(ιxF(x)) 
 (T5)  ¬∃!xF(x) ⊃ ιxF(x) = d 
 
 
 
The calculus in question is correct and deductively complete w.r.t. the usual FOL semantics 
extended with the semantics for ε-expressions. The Deduction Theorem holds as well. 
 
 
 
 


